Spark04-SparkSql

NiuMT 2021-05-21 10:18:00
Spark

SparkSql 概述

Spark SQL是Spark用于结构化数据(structured data)处理的Spark模块。

Hive and SparkSQL

SparkSQL的前身是Shark,给熟悉RDBMS但又不理解MapReduce的技术人员提供快速上手的工具。

Hive是早期唯一运行在Hadoop上的SQL-on-Hadoop工具。但是MapReduce计算过程中大量的中间磁盘落地过程消耗了大量的I/O,降低的运行效率,为了提高SQL-on-Hadoop的效率,大量的SQL-on-Hadoop工具开始产生,其中表现较为突出的是:Drill、Impala、Shark。

其中Shark是伯克利实验室Spark生态环境的组件之一,是基于Hive所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在Spark引擎上。

image-20210521204754627

Shark的出现,使得SQL-on-Hadoop的性能比Hive有了10-100倍的提高。

Shark对于Hive的太多依赖(如采用Hive的语法解析器、查询优化器等等),制约了Spark的One Stack Rule Them All的既定方针,制约了Spark各个组件的相互集成,所以提出了SparkSQL项目。SparkSQL抛弃原有Shark的代码,汲取了Shark的一些优点,如内存列存储(In-Memory Columnar Storage)、Hive兼容性等,重新开发了SparkSQL代码;由于摆脱了对Hive的依赖性,SparkSQL无论在数据兼容、性能优化、组件扩展方面都得到了极大的方便。

数据兼容方面 SparkSQL不但兼容Hive,还可以从RDD、parquet文件、JSON文件中获取数据,未来版本甚至支持获取RDBMS数据以及cassandra等NOSQL数据

性能优化方面 除了采取In-Memory Columnar Storage、byte-code generation等优化技术外、将会引进Cost Model对查询进行动态评估、获取最佳物理计划等等;

组件扩展方面 无论是SQL的语法解析器、分析器还是优化器都可以重新定义,进行扩展。

其中SparkSQL作为Spark生态的一员继续发展,而不再受限于Hive,只是兼容Hive;而Hive on Spark是一个Hive的发展计划,该计划将Spark作为Hive的底层引擎之一,也就是说,Hive将不再受限于一个引擎,可以采用Map-Reduce、Tez、Spark等引擎。

SparkSQL 特点

DataFrame介绍

在Spark中,DataFrame是一种以RDD为基础的分布式数据集,类似于传统数据库中的二维表格。DataFrame与RDD的主要区别在于,前者带有schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。这使得Spark SQL得以洞察更多的结构信息,从而对藏于DataFrame背后的数据源以及作用于DataFrame之上的变换进行了针对性的优化,最终达到大幅提升运行时效率的目标。反观RDD,由于无从得知所存数据元素的具体内部结构,Spark Core只能在stage层面进行简单、通用的流水线优化。

同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从 API 易用性的角度上看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API 要更加友好,门槛更低。

image-20210521205247713

左侧的RDD[Person]虽然以Person为类型参数,但Spark框架本身不了解Person类的内部结构。而右侧的DataFrame却提供了详细的结构信息,使得 Spark SQL 可以清楚地知道该数据集中包含哪些列,每列的名称和类型各是什么。

DataFrame是为数据提供了Schema的视图。可以把它当做数据库中的一张表来对待
DataFrame也是懒执行的,但性能上比RDD要高,主要原因:优化的执行计划,即查询计划通过Spark catalyst optimiser进行优化

DataSet介绍

DataSet是分布式数据集合。DataSet是Spark 1.6中添加的一个新抽象,是DataFrame的一个扩展。它提供了RDD的优势(强类型,使用强大的lambda函数的能力)以及Spark SQL优化执行引擎的优点。DataSet也可以使用功能性的转换(操作map,flatMap,filter等等)。

SparkSQL 核心编程

Spark Core中,如果想要执行应用程序,需要首先构建上下文环境对象SparkContext,Spark SQL其实可以理解为对Spark Core的一种封装,不仅仅在模型上进行了封装,上下文环境对象也进行了封装。

在老的版本中,SparkSQL提供两种SQL查询起始点:一个叫SQLContext,用于Spark自己提供的SQL查询;一个叫HiveContext,用于连接Hive的查询。

SparkSession是Spark最新的SQL查询起始点,实质上是SQLContext和HiveContext的组合,所以在SQLContex和HiveContext上可用的API在SparkSession上同样是可以使用的。SparkSession内部封装了SparkContext,所以计算实际上是由sparkContext完成的。当我们使用 spark-shell 的时候, spark框架会自动的创建一个名称叫做spark的SparkSession对象, 就像我们以前可以自动获取到一个sc来表示SparkContext对象一样。

DataFrame

Spark SQL的DataFrame API 允许我们使用 DataFrame 而不用必须去注册临时表或者生成 SQL 表达式。DataFrame API 既有 transformation操作也有action操作。

创建DataFrame

在Spark SQL中SparkSession是创建DataFrame和执行SQL的入口,创建DataFrame有三种方式:

  1. 通过Spark的数据源进行创建;

    scala> spark.read.

    csv format jdbc json load option options orc parquet schema
    table text textFile

    读取json文件创建DataFrame

    scala> val df = spark.read.json(“data/user.json”)

    df: org.apache.spark.sql.DataFrame = [age: bigint username: string]

    注意:如果从内存中获取数据,spark可以知道数据类型具体是什么。如果是数字,默认作为Int处理;但是从文件中读取的数字,不能确定是什么类型,所以用bigint接收,可以和Long类型转换,但是和Int不能进行转换

  2. 从一个存在的RDD进行转换;

  3. 还可以从Hive Table进行查询返回。

SQL 语法

SQL语法风格是指我们查询数据的时候使用SQL语句来查询,这种风格的查询必须要有临时视图或者全局视图来辅助.

//对DataFrame创建一个临时表
scala> df.createOrReplaceTempView ("pople")
//通过SQL语句实现查询全表
scala> val sqlDF = spark.sql ("SELECT * FROM people")
sqlDF: org.apache.spark.sql.DataFrame = [age: bigint name: string]
//结果展示 scala> sqlDF.show
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30|    lisi|
| 40|  wangwu|
+---+--------+
// 注意:普通临时表是Session范围内的,如果想应用范围内有效,可以使用全局临时表。使用全局临时表时需要全路径访问,如:global_temp.people

// 对于DataFrame创建一个全局表 
scala> df.createGlobalTempView ("people")
// 通过SQL语句实现查询全表
scala> spark.sql("SELECT * FROM global_temp.people").
+---+--------+
|age|username|
+---+--------+
| 20|zhangsan|
| 30|    lisi|
| 40|  wangwu|
+---+--------+

DSL 语法

DataFrame提供一个特定领域语言(domain-specific language, DSL)去管理结构化的数据。可以在 Scala, Java, Python 和 R 中使用 DSL,使用 DSL 语法风格不必去创建临时视图了

//创建一个DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint name: string]
//查看DataFrame的Schema信息
scala> df.printSchema
root
  |-- age: Long (nullable = true)
  |-- username: string (nullable = true)

//只查看"username"列数据
scala> df.select("username").show()
+--------+
|username|
+--------+
|zhangsan|
|    lisi|
|  wangwu|
+--------+

//查看"username"列数据以及"age+1"数据
注意:涉及到运算的时候, 每列都必须使用$, 或者采用引号表达式:单引号+字段名
scala> df.select($"username",$"age" + 1).show
scala> df.select( 'username, 'age + 1).show()
scala> df.select( 'username, 'age + 1 as "newage").show()

// 查看"age"大于"30"的数据
scala> df.filter($"age">30).show
+---+--------+
|age|username|
+---+--------+
| 40|  wangwu|
+---+--------+

// 按照"age"分组,查看数据条数 
scala> df.groupBy("age").count.show
+---+-----+
|age|count|
+---+-----+
| 20|    1|
| 30|    1|
| 40|    1|
+---+-----+

RDD 转换为 DataFrame

在IDEA中开发程序时,如果需要RDD与DF或者DS之间互相操作,那么需要引入 import spark.implicits._

这里的spark不是Scala中的包名,而是创建的sparkSession对象的变量名称,所以必须先创建SparkSession对象再导入。这里的spark对象不能使用var声明,因为Scala只支持val修饰的对象的引入。

spark-shell中无需导入,自动完成此操作。

scala> val idRDD = sc.textFile("data/id.txt")
scala> idRDD.toDF("id").show
+---+
| id|
+---+
|  1|
|  2|
|  3|
|  4|
+---+

实际开发中,一般通过样例类将RDD转换为DataFrame
scala> case class User(name:String, age:Int)
defined class User
scala> sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1, t._2)).toDF.show
+---------+----+
|     name| age|
+---------+----+
| zhangsan|  30|
|     lisi|  40|
+---------+----+

DataFrame 转换为 RDD

DataFrame其实就是对RDD的封装,所以可以直接获取内部的RDD

scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",40))).map(t=>User(t._1,t._2)).toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> val rdd = df.rdd
rdd: org.apache.spark.rdd.RDD[ org.apache.spark.sql.Row ] = MapPartitionsRDD[46] at rdd at <console>:25

scala> val array = rdd.collect
array: Array[org.apache.spark.sql.Row] = Array([zhangsan,30], [lisi,40])

注意:此时得到的RDD存储类型为Row

scala> array(0)
res28: org.apache. spark.sql.Row = [zhangsan,30]
scala> array(0)(0)
res29: Any = zhangsan
scala> array(0).getAs[String]("name")
res30: String = zhangsan

DataSet

DataSet是具有强类型的数据集合,需要提供对应的类型信息。

创建 DataSet

1.使用样例类序列创建DataSet

scala> case class Person(name: String, age: Long)
defined class Person

scala> val caseClassDS = Seq(Person("zhangsan",2)).toDS()

caseClassDS: org.apache.spark.sql.Dataset[Person] = [name: string, age: Long]

scala> caseClassDS.show
+---------+---+
|     name|age|
+---------+---+
| zhangsan|  2|
+---------+---+

2.使用基本类型的序列创建DataSet

scala> val ds = Seq(1,2,3,4,5).toDS
ds: org.apache.spark.sql.Dataset[Int] = [value: int]

scala> ds.show
+-----+
|value|
+-----+
|    1|
|    2|
|    3|
|    4|
|    5|
+-----+

注意:在实际使用的时候,很少用到把序列转换成DataSet,更多的是通过RDD来得到DataSet

RDD 转换为 DataSet

SparkSQL能够自动将包含有case类的RDD转换成DataSet,case类定义了table的结构,case类属性通过反射变成了表的列名。Case类可以包含诸如Seq或者Array等复杂的结构。

scala> case class User(name:String, age:Int)
defined class User

scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

DataSet 转换为 RDD

DataSet其实也是对RDD的封装,所以可以直接获取内部的RDD

scala> case class User(name:String, age:Int)
defined class User

scala> sc.makeRDD(List(("zhangsan",30), ("lisi",49))).map(t=>User(t._1, t._2)).toDS
res11: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

scala> val rdd = res11.rdd
rdd: org.apache.spark.rdd.RDD[User] = MapPartitionsRDD[51] at rdd at <console>:25

scala> rdd.collect
res12: Array[User] = Array(User(zhangsan,30), User(lisi,49))

DataFrame 和 DataSet 转换

DataFrame其实是DataSet的特例,所以它们之间是可以互相转换的

1.DataFrame ==> DataSet

scala> case class User(name:String, age:Int)
defined class User

scala> val df = sc.makeRDD(List(("zhangsan",30), ("lisi",49))).toDF("name","age")
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

2.DataSet ==> DataFrame

scala> val ds = df.as[User]
ds: org.apache.spark.sql.Dataset[User] = [name: string, age: int]

scala> val df = ds.toDF
df: org.apache.spark.sql.DataFrame = [name: string, age: int]

RDD 、 DataFrame 、 DataSet 三者的关系

在SparkSQL中Spark为我们提供了两个新的抽象,分别是DataFrame和DataSet。他们和RDD有什么区别呢?首先从版本的产生上来看:

如果同样的数据都给到这三个数据结构,他们分别计算之后,都会给出相同的结果。不同是的他们的执行效率和执行方式。在后期的Spark版本中,DataSet有可能会逐步取代RDD和DataFrame成为唯一的API接口。

三者的共性

  1. RDD、DataFrame、DataSet全都是spark平台下的分布式弹性数据集,为处理超大型数据提供便利;
  2. 三者都有惰性机制,在进行创建、转换,如map方法时,不会立即执行,只有在遇到Action如foreach时,三者才会开始遍历运算
  3. 三者有许多共同的函数,如filter,排序等;
  4. 在对DataFrame和Dataset进行操作许多操作都需要这个包:import spark.implicits._(在创建好SparkSession对象后尽量直接导入)
  5. 三者都会根据 Spark 的内存情况自动缓存运算,这样即使数据量很大,也不用担心会内存溢出
  6. 三者都有partition的概念
  7. DataFrame和DataSet均可使用模式匹配获取各个字段的值和类型

三者的区别

  1. RDD

    Ø RDD一般和spark mlib同时使用

    Ø RDD不支持sparksql操作

  2. DataFrame

    Ø 与RDD和Dataset不同,DataFrame每一行的类型固定为Row,每一列的值没法直接访问,只有通过解析才能获取各个字段的值

    Ø DataFrame与DataSet一般不与 spark mlib 同时使用

    Ø DataFrame与DataSet均支持 SparkSQL 的操作,比如select,groupby之类,还能注册临时表/视窗,进行 sql 语句操作

    Ø DataFrame与DataSet支持一些特别方便的保存方式,比如保存成csv,可以带上表头,这样每一列的字段名一目了然(后面专门讲解)

  3. DataSet

    Ø Dataset和DataFrame拥有完全相同的成员函数,区别只是每一行的数据类型不同。 DataFrame其实就是DataSet的一个特例 type DataFrame = Dataset[Row]

    Ø DataFrame也可以叫Dataset[Row],每一行的类型是Row,不解析,每一行究竟有哪些字段,各个字段又是什么类型都无从得知,只能用上面提到的getAS方法或者共性中的第七条提到的模式匹配拿出特定字段。而Dataset中,每一行是什么类型是不一定的,在自定义了case class之后可以很自由的获得每一行的信息

三者的互相转换

image-20210521213958657

IDEA 开发 SparkSQL

<dependency>
    <groupId>org.apache.spark</groupId>
    <artifactId>spark-sql_2.12</artifactId>
    <version>3.0.0</version>
</dependency>
object SparkSQL01_Demo {
  def main(args: Array[String]): Unit = {
    //创建上下文环境配置对象
    val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL01_Demo")

    //创建SparkSession对象
    val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
    //RDD=>DataFrame=>DataSet转换需要引入隐式转换规则,否则无法转换
    //spark不是包名,是上下文环境对象名
    import spark.implicits._

    //读取json文件 创建DataFrame  {"username": "lisi","age": 18}
    val df: DataFrame = spark.read.json("input/test.json")
    //df.show()

    //SQL风格语法
    df.createOrReplaceTempView("user")
    //spark.sql("select avg(age) from user").show

    //DSL风格语法
    //df.select("username","age").show()

    //*****RDD=>DataFrame=>DataSet*****
    //RDD
    val rdd1: RDD[(Int, String, Int)] = spark.sparkContext.makeRDD(List((1,"zhangsan",30),(2,"lisi",28),(3,"wangwu",20)))

    //DataFrame
    val df1: DataFrame = rdd1.toDF("id","name","age")
    //df1.show()

    //DateSet
    val ds1: Dataset[User] = df1.as[User]
    //ds1.show()

    //*****DataSet=>DataFrame=>RDD*****
    //DataFrame
    val df2: DataFrame = ds1.toDF()

    //RDD  返回的RDD类型为Row,里面提供的getXXX方法可以获取字段值,类似jdbc处理结果集,但是索引从0开始
    val rdd2: RDD[Row] = df2.rdd
    //rdd2.foreach(a=>println(a.getString(1)))

    //*****RDD=>DataSet*****
    rdd1.map{
      case (id,name,age)=>User(id,name,age)
    }.toDS()

    //*****DataSet=>=>RDD*****
    ds1.rdd

    //释放资源
    spark.stop()
  }
}
case class User(id:Int,name:String,age:Int)

用户自定义函数

用户可以通过spark.udf功能添加自定义函数,实现自定义功能。

UDF

//创建DataFrame
scala> val df = spark.read.json("data/user.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, username: string]
//注册UDF
scala> spark.udf.register("addName",(x:String)=> "Name:"+x)
res9: org.apache.spark.sql.expressions.UserDefinedFunction = UserDefinedFunction(<function1>,StringType,Some(List(StringType)))
//创建临时表
scala> df.createOrReplaceTempView("people")
//应用UDF
scala> spark.sql("Select addName(name),age from people").show()

UDAF

强类型的Dataset和弱类型的DataFrame都提供了相关的聚合函数, 如 count(),countDistinct(),avg(),max(),min()。除此之外,用户可以设定自己的自定义聚合函数。通过继承UserDefinedAggregateFunction来实现用户自定义聚合函数。

需求:计算平均工资

一个需求可以采用很多种不同的方法实现需求

实现方式 - RDD

val conf: SparkConf = new SparkConf().setAppName("app").setMaster("local[*]")
val sc: SparkContext = new SparkContext(conf)
val res: (Int, Int) = sc.makeRDD(List(("zhangsan", 20), ("lisi", 30), ("wangw", 40))).map {
  case (name, age) => {
    (age, 1)
  }
}.reduce {
  (t1, t2) => {
    (t1._1 + t2._1, t1._2 + t2._2)
  }
}
println(res._1/res._2)
// 关闭连接
sc.stop()

实现方式 - 累加器

class MyAC extends AccumulatorV2[Int,Int]{
  var sum:Int = 0
  var count:Int = 0
  override def isZero: Boolean = {
    return sum ==0 && count == 0
  }

  override def copy(): AccumulatorV2[Int, Int] = {
    val newMyAc = new MyAC
    newMyAc.sum = this.sum
    newMyAc.count = this.count
    newMyAc
  }

  override def reset(): Unit = {
    sum =0
    count = 0
  }

  override def add(v: Int): Unit = {
    sum += v
    count += 1
  }

  override def merge(other: AccumulatorV2[Int, Int]): Unit = {
    other match {
      case o:MyAC=>{
        sum += o.sum
        count += o.count
      }
      case _=>
    }

  }
  override def value: Int = sum/count
}

实现方式 - UDAF -弱类型

*
定义类继承UserDefinedAggregateFunction,并重写其中方法
*/
class MyAveragUDAF extends UserDefinedAggregateFunction {

  // 聚合函数输入参数的数据类型
  def inputSchema: StructType = StructType(Array(StructField("age",IntegerType)))

  // 聚合函数缓冲区中值的数据类型(age,count)
  def bufferSchema: StructType = {
    StructType(Array(StructField("sum",LongType),StructField("count",LongType)))
  }

  // 函数返回值的数据类型
  def dataType: DataType = DoubleType

  // 稳定性:对于相同的输入是否一直返回相同的输出。
  def deterministic: Boolean = true

  // 函数缓冲区初始化
  def initialize(buffer: MutableAggregationBuffer): Unit = {
    // 存年龄的总和
    buffer(0) = 0L
    // 存年龄的个数
    buffer(1) = 0L
  }

  // 更新缓冲区中的数据
  def update(buffer: MutableAggregationBuffer,input: Row): Unit = {
    if (!input.isNullAt(0)) {
      buffer(0) = buffer.getLong(0) + input.getInt(0)
      buffer(1) = buffer.getLong(1) + 1
    }
  }

  // 合并缓冲区
  def merge(buffer1: MutableAggregationBuffer,buffer2: Row): Unit = {
    buffer1(0) = buffer1.getLong(0) + buffer2.getLong(0)
    buffer1(1) = buffer1.getLong(1) + buffer2.getLong(1)
  }

  // 计算最终结果
  def evaluate(buffer: Row): Double = buffer.getLong(0).toDouble / buffer.getLong(1)
}

。。。

//创建聚合函数
var myAverage = new MyAveragUDAF

//在spark中注册聚合函数
spark.udf.register("avgAge",myAverage)

spark.sql("select avgAge(age) from user").show()

实现方式 - UDAF - 强类型

//输入数据类型
case class User01(username:String,age:Long)
//缓存类型
case class AgeBuffer(var sum:Long,var count:Long)

/**
  * 定义类继承org.apache.spark.sql.expressions.Aggregator
  * 重写类中的方法
  */
class MyAveragUDAF1 extends Aggregator[User01,AgeBuffer,Double]{
  override def zero: AgeBuffer = {
    AgeBuffer(0L,0L)
  }

  override def reduce(b: AgeBuffer, a: User01): AgeBuffer = {
    b.sum = b.sum + a.age
    b.count = b.count + 1
    b
  }

  override def merge(b1: AgeBuffer, b2: AgeBuffer): AgeBuffer = {
    b1.sum = b1.sum + b2.sum
    b1.count = b1.count + b2.count
    b1
  }

  override def finish(buff: AgeBuffer): Double = {
    buff.sum.toDouble/buff.count
  }
  //DataSet默认额编解码器,用于序列化,固定写法
  //自定义类型就是produce   自带类型根据类型选择
  override def bufferEncoder: Encoder[AgeBuffer] = {
    Encoders.product
  }

  override def outputEncoder: Encoder[Double] = {
    Encoders.scalaDouble
  }
}

。。。

//封装为DataSet
val ds: Dataset[User01] = df.as[User01]

//创建聚合函数
var myAgeUdaf1 = new MyAveragUDAF1
//将聚合函数转换为查询的列
val col: TypedColumn[User01, Double] = myAgeUdaf1.toColumn

//查询
ds.select(col).show()

Spark3.0版本可以采用强类型的Aggregator方式代替UserDefinedAggregateFunction

// TODO 创建 UDAF 函数
val udaf = new MyAvgAgeUDAF
// TODO 注册到 SparkSQL 中
spark.udf.register("avgAge", functions.udaf(udaf))
// TODO 在 SQL 中使用聚合函数
// 定义用户的自定义聚合函数
spark.sql("select avgAge(age) from user").show


case class Buff(var sum:Long, var cnt:Long )
// totalage, count
class MyAvgAgeUDAF extends Aggregator[Long, Buff, Double]{
    override def zero: Buff = Buff(0,0)
    override def reduce(b: Buff, a: Long): Buff = {
        b.sum += a
        b.cnt += 1
        b
    }
    override def merge(b1: Buff, b2: Buff): Buff = {
        b1.sum += b2.sum
        b1.cnt += b2.cnt
        b1
    }
    override def finish(reduction: Buff): Double = {
        reduction.sum.toDouble/reduction.cnt
    }
    override def bufferEncoder: Encoder[Buff] = Encoders.product
    override def outputEncoder: Encoder[Double] = Encoders.scalaDouble
}

数据的加载和保存

通用的加载和保存方式

SparkSQL提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL默认读取和保存的文件格式为parquet

spark.read.load 是加载数据的通用方法

scala> spark.read.
csv format jdbc json load option options orc parquet schema
table text textFile

//如果读取不同格式的数据,可以对不同的数据格式进行设定
scala> spark.read.format("…")[.option("…")].load("…")
//我们前面都是使用read API 先把文件加载到 DataFrame然后再查询,其实,我们也可以直接在文件上进行查询:  文件格式.`文件路径`
scala>spark.sql("select * from json.`/opt/module/data/user.json`").show

df.write.save 是保存数据的通用方法

scala>df.write.
csv  jdbc   json  orc   parquet textFile… …

//如果保存不同格式的数据,可以对不同的数据格式进行设定
scala>df.write.format("…")[.option("…")].save("…")

df.write.mode("append").json("/opt/module/data/output")

保存操作可以使用 SaveMode, 用来指明如何处理数据,使用mode()方法来设置。有一点很重要: 这些 SaveMode 都是没有加锁的, 也不是原子操作。SaveMode是一个枚举类,其中的常量包括:

Scala/Java Any Language Meaning
SaveMode.ErrorIfExists(default) “error”(default) 如果文件已经存在则抛出异常
SaveMode.Append “append” 如果文件已经存在则追加
SaveMode.Overwrite “overwrite” 如果文件已经存在则覆盖
SaveMode.Ignore “ignore” 如果文件已经存在则忽略

Parquet

Spark SQL的默认数据源为Parquet格式。Parquet是一种能够有效存储嵌套数据的列式存储格式。

数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作,不需要使用format。修改配置项spark.sql.sources.default,可修改默认数据源格式。

//加载数据
scala> val df = spark.read.load("examples/src/main/resources/users.parquet")
scala> df.show


//保存数据
scala> var df = spark.read.json("/opt/module/data/input/people.json")
//保存为parquet格式
scala> df.write.mode("append").save("/opt/module/data/output")

JSON

Spark SQL 能够自动推测JSON数据集的结构,并将它加载为一个Dataset[Row]. 可以通过SparkSession.read.json()去加载JSON 文件。

注意:Spark读取的JSON文件不是传统的JSON文件,每一行都应该是一个JSON串。格式如下:

{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
//导入隐式转换
import spark.implicits._
//加载JSON文件
val path = "/opt/module/spark-local/people.json"
val peopleDF = spark.read.json(path)
//创建临时表
peopleDF.createOrReplaceTempView("people")
//数据查询
val teenagerNamesDF = spark.sql("SELECT name FROM people WHERE age BETWEEN 13 AND 19")
teenagerNamesDF.show()
+------+
|  name|
+------+
|Justin|
+------+

CSV

Spark SQL可以配置CSV文件的列表信息,读取CSV文件,CSV文件的第一行设置为数据列

spark.read.format(“csv”).option(“sep”, “;”).option(“inferSchema”, “true”).option(“header”, “true”).load(“data/user.csv”)

MySQL

Spark SQL可以通过JDBC从关系型数据库中读取数据的方式创建DataFrame,通过对DataFrame一系列的计算后,还可以将数据再写回关系型数据库中。如果使用spark-shell操作,可在启动shell时指定相关的数据库驱动路径或者将相关的数据库驱动放到spark的类路径下。(bin/spark-shell —jars mysql-connector-java-5.1.27-bin.jar)

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.27</version>
</dependency>
1.读取数据
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL")

//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()

import spark.implicits._

//方式1:通用的load方法读取
spark.read.format("jdbc")
  .option("url", "jdbc:mysql://linux1:3306/spark-sql")
  .option("driver", "com.mysql.jdbc.Driver")
  .option("user", "root")
  .option("password", "123123")
  .option("dbtable", "user")
  .load().show

//方式2:通用的load方法读取 参数另一种形式
spark.read.format("jdbc")
  .options(Map("url"->"jdbc:mysql://linux1:3306/spark-sql?user=root&password=123123",
    "dbtable"->"user","driver"->"com.mysql.jdbc.Driver")).load().show

//方式3:使用jdbc方法读取
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123123")
val df: DataFrame = spark.read.jdbc("jdbc:mysql://linux1:3306/spark-sql", "user", props)
df.show

//释放资源
spark.stop()



2.写入数据
case class User2(name: String, age: Long)
。。。
val conf: SparkConf = new SparkConf().setMaster("local[*]").setAppName("SparkSQL")

//创建SparkSession对象
val spark: SparkSession = SparkSession.builder().config(conf).getOrCreate()
import spark.implicits._

val rdd: RDD[User2] = spark.sparkContext.makeRDD(List(User2("lisi", 20), User2("zs", 30)))
val ds: Dataset[User2] = rdd.toDS
//方式1:通用的方式  format指定写出类型
ds.write
  .format("jdbc")
  .option("url", "jdbc:mysql://linux1:3306/spark-sql")
  .option("user", "root")
  .option("password", "123123")
  .option("dbtable", "user")
  .mode(SaveMode.Append)
  .save()

//方式2:通过jdbc方法
val props: Properties = new Properties()
props.setProperty("user", "root")
props.setProperty("password", "123123")
ds.write.mode(SaveMode.Append).jdbc("jdbc:mysql://linux1:3306/spark-sql", "user", props)

//释放资源
spark.stop()

Hive

Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)以及 Hive 查询语言(HiveQL/HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译Spark SQL时引入Hive支持,这样就可以使用这些特性了。如果你下载的是二进制版本的 Spark,它应该已经在编译时添加了 Hive 支持。

若要把 Spark SQL 连接到一个部署好的 Hive 上,你必须把 hive-site.xml 复制到 Spark的配置文件目录中($SPARK_HOME/conf)。即使没有部署好 Hive,Spark SQL 也可以运行。 需要注意的是,如果你没有部署好Hive,Spark SQL 会在当前的工作目录中创建出自己的 Hive 元数据仓库,叫作 metastore_db。此外,如果你尝试使用 HiveQL 中的 CREATE TABLE (并非 CREATE EXTERNAL TABLE)语句来创建表,这些表会被放在你默认的文件系统中的 /user/hive/warehouse 目录中(如果你的 classpath 中有配好的 hdfs-site.xml,默认的文件系统就是 HDFS,否则就是本地文件系统)。

spark-shell默认是Hive支持的;代码中是默认不支持的,需要手动指定(加一个参数即可)。

1. 内嵌的HIVE:直接使用即可,无需其他配置,Hive 的元数据存储在 derby 中, 仓库地址:$SPARK_HOME/spark-warehouse。

2. 外部的HIVE

  1. Spark要接管Hive需要把hive-site.xml拷贝到conf/目录下
  2. 把Mysql的驱动copy到jars/目录下
  3. 如果访问不到hdfs,则需要把core-site.xml和hdfs-site.xml拷贝到conf/目录下

3. 运行Spark SQL CLI:Spark SQL CLI可以很方便的在本地运行Hive元数据服务以及从命令行执行查询任务。在Spark目录下执行如下命令启动Spark SQL CLI,直接执行SQL语句,类似一Hive窗口:bin/spark-sql

4. 代码操作Hive

4.1 导入依赖

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-hive_2.12</artifactId>
  <version>2.4.5</version>
</dependency>

<dependency>
  <groupId>org.apache.hive</groupId>
  <artifactId>hive-exec</artifactId>
  <version>3.1.2</version>
</dependency>

4.2 将hive-site.xml文件拷贝到项目的resources目录中

4.3

//创建SparkSession
val spark: SparkSession = SparkSession
  .builder()
  .enableHiveSupport()
  .master("local[*]")
  .appName("sql")
  .getOrCreate()

注意:在开发工具中创建数据库默认是在本地仓库,通过参数修改数据库仓库的地址: config(“spark.sql.warehouse.dir”, “hdfs://linux1:9000/user/hive/warehouse”)

如果在执行操作时,出现如下错误:

image-20210522094757319

可以代码最前面增加如下代码解决:

System.setProperty(“HADOOP_USER_NAME”, “root”)