数据结构06-栈

NiuMT 2020-11-25 17:07:34
数据结构

[toc]

栈的概述

栈是一种“操作受限”的线性表,只允许在一端插入和删除数据。后进者先出,先进者后出

事实上,从功能上来说,数组或链表确实可以替代栈,但你要知道,特定的数据结构是对特定场景的抽象,而且,数组或链表暴露了太多的操作接口,操作上的确灵活自由,但使用时就比较不可控,自然也就更容易出错。

当某个数据集合只涉及在一端插入和删除数据,并且满足后进先出、先进后出的特性,我们就应该首选“栈”这种数据结构

栈既可以用数组来实现,也可以用链表来实现。用数组实现的栈,叫作顺序栈,用链表实现的栈,叫作链式栈

实现

// 基于数组实现的顺序栈
public class ArrayStack {
  private String[] items;  // 数组
  private int count;       // 栈中元素个数
  private int n;           // 栈的大小

  // 初始化数组,申请一个大小为 n 的数组空间
  public ArrayStack(int n) {
    this.items = new String[n];
    this.n = n;
    this.count = 0;
  }

  // 入栈操作
  public boolean push(String item) {
    // 数组空间不够了,直接返回 false,入栈失败。
    if (count == n) return false;
    // 将 item 放到下标为 count 的位置,并且 count 加一
    items[count] = item;
    ++count;
    return true;
  }

  // 出栈操作
  public String pop() {
    // 栈为空,则直接返回 null
    if (count == 0) return null;
    // 返回下标为 count-1 的数组元素,并且栈中元素个数 count 减一
    String tmp = items[count-1];
    --count;
    return tmp;
  }
}


/**
 * 基于链表实现的栈。
 * Author: Zheng
 */
public class StackBasedOnLinkedList {
  private Node top = null;

  public void push(int value) {
    Node newNode = new Node(value, null);
    // 判断是否栈空
    if (top == null) {
      top = newNode;
    } else {
      newNode.next = top;
      top = newNode;
    }
  }

  /**
   * 用-1表示栈中没有数据。
   */
  public int pop() {
    if (top == null) return -1;
    int value = top.data;
    top = top.next;
    return value;
  }

  public void printAll() {
    Node p = top;
    while (p != null) {
      System.out.print(p.data + " ");
      p = p.next;
    }
    System.out.println();
  }

  private static class Node {
    private int data;
    private Node next;

    public Node(int data, Node next) {
      this.data = data;
      this.next = next;
    }

    public int getData() {
      return data;
    }
  }
}

支持动态扩容的顺序栈

要实现一个支持动态扩容的栈,只需要底层依赖一个支持动态扩容的数组就可以了。当栈满了之后,就申请一个更大的数组,将原来的数据搬移到新数组中。

实际上,支持动态扩容的顺序栈,平时开发中并不常用到。主要练习一下前面的复杂度分析方法。

对于出栈操作来说,我们不会涉及内存的重新申请和数据的搬移,所以出栈的时间复杂度仍然是 O(1)。

对于入栈操作来说,当栈中有空闲空间时,入栈操作的时间复杂度为 O(1)。但当空间不够时,就需要重新申请内存和数据搬移,所以时间复杂度就变成了 O(n)。

为了分析的方便,需要事先做一些假设和定义:

  1. 栈空间不够时,重新申请一个是原来大小两倍的数组;
  2. 为了简化分析,假设只有入栈操作没有出栈操作;
  3. 定义不涉及内存搬移的入栈操作为 simple-push 操作(不需要扩容时的入栈操作),时间复杂度为 O(1)。

如果当前栈大小为 K,并且已满,当再有新的数据要入栈时,就需要重新申请 2 倍大小的内存,并且做 K 个数据的搬移操作,然后再入栈。但是,接下来的 K-1 次入栈操作,我们都不需要再重新申请内存和搬移数据,所以这 K-1 次入栈操作都只需要一个 simple-push 操作就可以完成。

image-20201125172102752

这 K 次入栈操作,总共涉及了 K 个数据的搬移,以及 K 次 simple-push 操作。将 K 个数据搬移均摊到 K 次入栈操作,那每个入栈操作只需要一个数据搬移和一个 simple-push 操作。以此类推,入栈操作的均摊时间复杂度就为 O(1)。均摊时间复杂度一般都等于最好情况时间复杂度。因为在大部分情况下,入栈操作的时间复杂度 O 都是 O(1),只有在个别时刻才会退化为 O(n),所以把耗时多的入栈操作的时间均摊到其他入栈操作上,平均情况下的耗时就接近 O(1)。

栈的应用

函数调用栈

操作系统给每个线程分配了一块独立的内存空间,这块内存被组织成“栈”这种结构, 用来存储函数调用时的临时变量。每进入一个函数,就会将临时变量作为一个栈帧入栈,当被调用函数执行完成,返回之后,将这个函数对应的栈帧出栈。

int main() {
   int a = 1; 
   int ret = 0;
   int res = 0;
   ret = add(3, 5);
   res = a + ret;
   printf("%d", res);
   reuturn 0;
}

int add(int x, int y) {
   int sum = 0;
   sum = x + y;
   return sum;
}

main() 函数调用了 add() 函数,获取计算结果,并且与临时变量 a 相加,最后打印 res 的值。

image-20201125172738845

表达式求值

为了方便解释,将算术表达式简化为只包含加减乘除四则运算,比如:3+5*8-6。对于这个四则运算,人脑可以很快求解出答案,但是对于计算机来说,理解这个表达式本身就是个挺难的事儿。

实际上,编译器就是通过两个栈来实现的。其中一个保存==操作数==的栈,另一个是保存==运算符==的栈。从左向右遍历表达式,当遇到数字,就直接压入操作数栈;当遇到运算符,就与运算符栈的栈顶元素进行比较。

如果比运算符栈顶元素的优先级高,就将当前运算符压入栈;如果比运算符栈顶元素的优先级低或者相同,从运算符栈中取栈顶运算符,从操作数栈的栈顶取 2 个操作数,然后进行计算,再把计算完的结果压入操作数栈,继续比较。

image-20201125173032487

括号匹配

假设表达式中只包含三种括号,圆括号 ()、方括号 [] 和花括号{},并且它们可以任意嵌套。比如,{[{}]}或 [{()}([])] 等都为合法格式,而{[}()] 或 [({)] 为不合法的格式。现在给有一个包含三种括号的表达式字符串,如何检查它是否合法呢?

用栈来保存未匹配的左括号,从左到右依次扫描字符串。当扫描到左括号时,则将其压入栈中;当扫描到右括号时,从栈顶取出一个左括号。如果能够匹配,比如“(”跟“)”匹配,“[”跟“]”匹配,“{”跟“}”匹配,则继续扫描剩下的字符串。如果扫描的过程中,遇到不能配对的右括号,或者栈中没有数据,则说明为非法格式。

当所有的括号都扫描完成之后,如果栈为空,则说明字符串为合法格式;否则,说明有未匹配的左括号,为非法格式。