数据结构17-二叉树基础

NiuMT 2020-12-26 11:19:17
数据结构

[toc]

二叉树有哪几种存储方式?什么样的二叉树适合用数组来存储?

树(Tree)

比如下面这幅图,A 节点就是 B 节点的父节点,B 节点是 A 节点的子节点。B、C、D 这三个节点的父节点是同一个节点,所以它们之间互称为兄弟节点。我们把没有父节点的节点叫作根节点,也就是图中的节点 E。我们把没有子节点的节点叫作叶子节点或者叶节点,比如图中的 G、H、I、J、K、L 都是叶子节点。

image-20201226203045759

image-20201226203335310

二叉树(Binary Tree)

二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是左子节点右子\**节**\点**。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。

image-20201226210735677

编号 2 的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫作满二叉树

编号 3 的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫作完全二叉树

要理解完全二叉树定义的由来,我们需要先了解,如何表示(或者存储)一棵二叉树?

想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。

我们先来看比较简单、直观的链式存储法。从图中你应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

image-20201226212103055

我们再来看,基于数组的顺序存储法。我们把根节点存储在下标 i = 1 的位置,那左子节点存储在下标 2 * i = 2 的位置,右子节点存储在 2 * i + 1 = 3 的位置。以此类推,B 节点的左子节点存储在 2 * i = 2 * 2 = 4 的位置,右子节点存储在 2 * i + 1 = 2 * 2 + 1 = 5 的位置。如果节点 X 存储在数组中下标为 i 的位置,下标为 2 i 的位置存储的就是左子节点,下标为 2 i + 1 的位置存储的就是右子节点。反过来,下标为 i/2 的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为 1 的位置),这样就可以通过下标计算,把整棵树都串起来。

image-20201226212130033

刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为 0 的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。

所以,如果某棵二叉树是一棵==完全二叉树,那用数组存储无疑是最节省内存==的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常用的存储方式就是数组。

二叉树的遍历

如何将所有节点都遍历打印出来呢?经典的方法有三种,前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。

image-20201226212502190

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。

void preOrder(Node* root) {
  if (root == null) return;
  print root // 此处为伪代码,表示打印 root 节点
  preOrder(root->left);
  preOrder(root->right);
}

void inOrder(Node* root) {
  if (root == null) return;
  inOrder(root->left);
  print root // 此处为伪代码,表示打印 root 节点
  inOrder(root->right);
}

void postOrder(Node* root) {
  if (root == null) return;
  postOrder(root->left);
  postOrder(root->right);
  print root // 此处为伪代码,表示打印 root 节点
}

从前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数 n 成正比,也就是说二叉树遍历的时间复杂度是 O(n)。

二叉树中,有两种比较特殊的树,分别是满二叉树和完全二叉树。满二叉树又是完全二叉树的一种特殊情况。

二叉树既可以用链式存储,也可以用数组顺序存储。数组顺序存储的方式比较适合完全二叉树,其他类型的二叉树用数组存储会比较浪费存储空间。

二叉查找树(Binary Search Tree)

二叉查找树是二叉树中最常用的一种类型,也叫二叉搜索树。它不仅仅支持快速查找一个数据,还支持快速插入、删除一个数据。

这些都依赖于二叉查找树的特殊结构。二叉查找树要求,在树中的任意一个节点,其左子树中的每个节点的值,都要小于这个节点的值,而右子树节点的值都大于这个节点的值。

image-20201226215258448

二叉查找树的查找操作

我们先取根节点,如果它等于我们要查找的数据,那就返回。如果要查找的数据比根节点的值小,那就在左子树中递归查找;如果要查找的数据比根节点的值大,那就在右子树中递归查找。

public class BinarySearchTree {
  private Node tree;

  public Node find(int data) {
    Node p = tree;
    while (p != null) {
      if (data < p.data) p = p.left;
      else if (data > p.data) p = p.right;
      else return p;
    }
    return null;
  }

  public static class Node {
    private int data;
    private Node left;
    private Node right;

    public Node(int data) {
      this.data = data;
    }
  }
}

二叉查找树的插入操作

二叉查找树的插入过程有点类似查找操作。新插入的数据一般都是在叶子节点上,所以我们只需要从根节点开始,依次比较要插入的数据和节点的大小关系。

如果要插入的数据比节点的数据大,并且节点的右子树为空,就将新数据直接插到右子节点的位置;如果不为空,就再递归遍历右子树,查找插入位置。同理,如果要插入的数据比节点数值小,并且节点的左子树为空,就将新数据插入到左子节点的位置;如果不为空,就再递归遍历左子树,查找插入位置。

image-20201226215411175

public void insert(int data) {
  if (tree == null) {
    tree = new Node(data);
    return;
  }

  Node p = tree;
  while (p != null) {
    if (data > p.data) {
      if (p.right == null) {
        p.right = new Node(data);
        return;
      }
      p = p.right;
    } else { // data < p.data
      if (p.left == null) {
        p.left = new Node(data);
        return;
      }
      p = p.left;
    }
  }
}

二叉查找树的删除操作

二叉查找树的查找、插入操作都比较简单易懂,但是它的删除操作就比较复杂了 。针对要删除节点的子节点个数的不同,我们需要分三种情况来处理。

第一种情况是,如果要删除的节点没有子节点,我们只需要直接将父节点中,指向要删除节点的指针置为 null。比如图中的删除节点 55。

第二种情况是,如果要删除的节点只有一个子节点(只有左子节点或者右子节点),我们只需要更新父节点中,指向要删除节点的指针,让它指向要删除节点的子节点就可以了。比如图中的删除节点 13。

第三种情况是,如果要删除的节点有两个子节点,这就比较复杂了。我们需要找到这个节点的右子树中的最小节点,把它替换到要删除的节点上。然后再删除掉这个最小节点,因为最小节点肯定没有左子节点(如果有左子结点,那就不是最小节点了),所以,我们可以应用上面两条规则来删除这个最小节点。比如图中的删除节点 18。

image-20201226215445611

public void delete(int data) {
  Node p = tree; // p 指向要删除的节点,初始化指向根节点
  Node pp = null; // pp 记录的是 p 的父节点
  while (p != null && p.data != data) {
    pp = p;
    if (data > p.data) p = p.right;
    else p = p.left;
  }
  if (p == null) return; // 没有找到

  // 要删除的节点有两个子节点
  if (p.left != null && p.right != null) { // 查找右子树中最小节点
    Node minP = p.right;
    Node minPP = p; // minPP 表示 minP 的父节点
    while (minP.left != null) {
      minPP = minP;
      minP = minP.left;
    }
    p.data = minP.data; // 将 minP 的数据替换到 p 中
    p = minP; // 下面就变成了删除 minP 了
    pp = minPP;
  }

  // 删除节点是叶子节点或者仅有一个子节点
  Node child; // p 的子节点
  if (p.left != null) child = p.left;
  else if (p.right != null) child = p.right;
  else child = null;

  if (pp == null) tree = child; // 删除的是根节点
  else if (pp.left == p) pp.left = child;
  else pp.right = child;
}

实际上,关于二叉查找树的删除操作,还有个非常简单、取巧的方法,就是单纯将要删除的节点标记为“已删除”,但是并不真正从树中将这个节点去掉。这样原本删除的节点还需要存储在内存中,比较浪费内存空间,但是删除操作就变得简单了很多。而且,这种处理方法也并没有增加插入、查找操作代码实现的难度。

二叉查找树的其他操作

除了插入、删除、查找操作之外,二叉查找树中还可以支持快速地查找最大节点和最小节点、前驱节点和后继节点

二叉查找树除了支持上面几个操作之外,还有一个重要的特性,就是中序遍历二叉查找树,可以输出有序的数据序列,时间复杂度是 O(n),非常高效。因此,二叉查找树也叫作二叉排序树。

二叉查找树是最常用的一种二叉树,它支持快速插入、删除、查找操作,各个操作的时间复杂度跟树的高度成正比,理想情况下,时间复杂度是 O(logn)

不过,二叉查找树在频繁的动态更新过程中,可能会出现树的高度远大于 log2n 的情况,从而导致各个操作的效率下降。极端情况下,二叉树会退化为链表,时间复杂度会退化到 O(n)。

支持重复数据的二叉查找树

前面讲二叉查找树的时候,我们默认树中节点存储的都是数字。很多时候,在实际的软件开发中,我们在二叉查找树中存储的,是一个包含很多字段的对象。我们利用对象的某个字段作为键值(key)来构建二叉查找树。我们把对象中的其他字段叫作卫星数据。

前面我们讲的二叉查找树的操作,针对的都是不存在键值相同的情况。那如果存储的两个对象键值相同,这种情况该怎么处理呢?我这里有两种解决方法。

第一种方法比较容易。二叉查找树中每一个节点不仅会存储一个数据,因此我们通过链表和支持动态扩容的数组等数据结构,把值相同的数据都存储在同一个节点上。

第二种方法比较不好理解,不过更加优雅。

每个节点仍然只存储一个数据。在查找插入位置的过程中,如果碰到一个节点的值,与要插入数据的值相同,我们就将这个要插入的数据放到这个节点的右子树,也就是说,把这个新插入的数据当作大于这个节点的值来处理。

image-20201226215803160

当要查找数据的时候,遇到值相同的节点,我们并不停止查找操作,而是继续在右子树中查找,直到遇到叶子节点,才停止。这样就可以把键值等于要查找值的所有节点都找出来。

对于删除操作,我们也需要先查找到每个要删除的节点,然后再按前面讲的删除操作的方法,依次删除。

image-20201226215835548

二叉查找树的时间复杂度分析

实际上,二叉查找树的形态各式各样。比如这个图中,对于同一组数据,我们构造了三种二叉查找树。它们的查找、插入、删除操作的执行效率都是不一样的。图中第一种二叉查找树,根节点的左右子树极度不平衡,已经退化成了链表,所以查找的时间复杂度就变成了 O(n)。

image-20201226215906024

现在来分析一个最理想的情况,二叉查找树是一棵完全二叉树(或满二叉树),不管操作是插入、删除还是查找,时间复杂度其实都跟树的高度成正比,也就是 O(height)

树的高度就等于最大层数减一,为了方便计算,我们转换成层来表示。从图中可以看出,包含 n 个节点的完全二叉树中,第一层包含 1 个节点,第二层包含 2 个节点,第三层包含 4 个节点,依次类推,下面一层节点个数是上一层的 2 倍,第 K 层包含的节点个数就是 2^(K-1)。

不过,对于完全二叉树来说,最后一层的节点个数有点儿不遵守上面的规律了。它包含的节点个数在 1 个到 2^(L-1) 个之间(我们假设最大层数是 L)。如果我们把每一层的节点个数加起来就是总的节点个数 n。也就是说,如果节点的个数是 n,那么 n 满足这样一个关系:

借助等比数列的求和公式,我们可以计算出,L 的范围是 [log~2~(n+1), log~2~n +1]。完全二叉树的层数小于等于 log~2~n +1,也就是说,完全二叉树的高度小于等于 log~2~n。

显然,极度不平衡的二叉查找树,它的查找性能肯定不能满足我们的需求。

散列表和二叉树

第一,散列表中的数据是无序存储的,如果要输出有序的数据,需要先进行排序。而对于二叉查找树来说,我们只需要中序遍历,就可以在 O(n) 的时间复杂度内,输出有序的数据序列。

第二,散列表扩容耗时很多,而且当遇到散列冲突时,性能不稳定,尽管二叉查找树的性能不稳定,但是在工程中,我们最常用的平衡二叉查找树的性能非常稳定,时间复杂度稳定在 O(logn)。

第三,笼统地来说,尽管散列表的查找等操作的时间复杂度是常量级的,但因为哈希冲突的存在,这个常量不一定比 logn 小,所以实际的查找速度可能不一定比 O(logn) 快。加上哈希函数的耗时,也不一定就比平衡二叉查找树的效率高。

第四,散列表的构造比二叉查找树要复杂,需要考虑的东西很多。比如散列函数的设计、冲突解决办法、扩容、缩容等。平衡二叉查找树只需要考虑平衡性这一个问题,而且这个问题的解决方案比较成熟、固定。

最后,为了避免过多的散列冲突,散列表装载因子不能太大,特别是基于开放寻址法解决冲突的散列表,不然会浪费一定的存储空间。

综合这几点,平衡二叉查找树在某些方面还是优于散列表的,所以,这两者的存在并不冲突。我们在实际的开发过程中,需要结合具体的需求来选择使用哪一个。