数据结构08-递归

NiuMT 2020-11-26 15:20:44
数据结构

[toc]

递归

递归是一种应用非常广泛的算法(或者编程技巧)。之后我们要讲的很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。

递归需要满足的三个条件:

  1. 一个问题的解可以分解为几个子问题的解
  2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
  3. 存在递归终止条件

写递归代码最关键的是写出递推公式,找到终止条件.

在时间效率上,递归代码里多了很多函数调用,当这些函数调用的数量较大时,就会积聚成一个可观的时间成本。在空间复杂度上,因为递归调用一次就会在内存栈中保存一次现场数据,所以在分析递归代码空间复杂度时,需要额外考虑这部分的开销,

举例

假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?

可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:f(n) = f(n-1)+f(n-2)

来看下终止条件。当有一个台阶时,我们不需要再继续递归,就只有一种走法,所以 f(1)=1;有两个台阶时,只有两种走法,(一次走两步或者两次一步)所以 f(2)=2。

int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

计算机擅长做重复的事情,所以递归正和它的胃口。而我们人脑更喜欢平铺直叙的思维方式。当我们看到递归时,我们总想把递归平铺展开,脑子里就会循环,一层一层往下调,然后再一层一层返回,试图想搞清楚计算机每一步都是怎么执行的,这样就很容易被绕进去。人脑几乎没办法把整个“递”和“归”的过程一步一步都想清楚。

因此,编写递归代码的关键是,只要遇到递归,我们就把它抽象成一个递推公式,不用想一层层的调用关系,不要试图用人脑去分解递归的每个步骤

递归代码要警惕堆栈溢出

函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。

可以通过在代码中限制递归调用的最大深度的方式来解决这个问题。递归调用超过一定深度(比如 1000)之后,我们就不继续往下再递归了,直接返回报错。

递归代码要警惕重复计算

image-20201126153732353

为了避免重复计算,可以通过一个数据结构(比如散列表)来保存已经求解过的 f(k)。当递归调用到 f(k) 时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免。

public int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;

  // hasSolvedList 可以理解成一个 Map,key 是 n,value 是 f(n)
  if (hasSolvedList.containsKey(n)) {
    return hasSovledList.get(n);
  }

  int ret = f(n-1) + f(n-2);
  hasSovledList.put(n, ret);
  return ret;
}

递归代码改写为非递归代码

对 f(x) =f(x-1)+1 这个递推公式:

int f(int n) {
  int ret = 1;
  for (int i = 2; i <= n; ++i) {
    ret = ret + 1;
  }
  return ret;
}

针对,上面举例:

int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;

  int ret = 0;
  int pre = 2;
  int prepre = 1;
  for (int i = 3; i <= n; ++i) {
    ret = pre + prepre;
    prepre = pre;
    pre = ret;
  }
  return ret;
}

笼统地讲,所有的递归代码都可以改为这种迭代循环的非递归写法。