Java8 新特性概览
Lambda表达式
Lambda是一个匿名函数 ,我们可以把 Lambda 表达式理解为是 一段可以传递的代码 (将代码像数据一样进行传递)。使用它可以写出更简洁、更灵活的代码。作为一种更紧凑的代码风格,使 Java 的语言表达能力得到了提升。
Lambda表达式:在 Java 8 语言中引入的一种新的语法元素和操作符。这个操作符为 “->” ,该操作符被称为 Lambda 操作符或箭头操作符 。它将 Lambda 分为两个部分:
左侧:指定了 Lambda 表达式需要的参数列表
右侧:指定了 Lambda 体是抽象方法的实现逻辑,也即Lambda 表达式要执行的功能。
import org.junit.Test;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.function.Consumer;
/**
* Lambda表达式的使用:(分为6种情况介绍)
*/
public class LambdaTest1 {
//语法格式一:无参,无返回值
@Test
public void test1(){
Runnable r1 = new Runnable() {
@Override
public void run() {
System.out.println("我爱北京天安门");
}
};
r1.run();
System.out.println("***********************");
Runnable r2 = () -> {
System.out.println("我爱北京故宫");
};
r2.run();
}
//语法格式二:Lambda 需要一个参数,但是没有返回值。
@Test
public void test2(){
Consumer<String> con = new Consumer<String>() {
@Override
public void accept(String s) {
System.out.println(s);
}
};
con.accept("谎言和誓言的区别是什么?");
System.out.println("*******************");
Consumer<String> con1 = (String s) -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
}
//语法格式三:数据类型可以省略,因为可由编译器推断得出,称为“类型推断”
@Test
public void test3(){
Consumer<String> con1 = (String s) -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("*******************");
Consumer<String> con2 = (s) -> {
System.out.println(s);
};
con2.accept("一个是听得人当真了,一个是说的人当真了");
}
@Test
public void test4(){
ArrayList<String> list = new ArrayList<>();//类型推断
int[] arr = {1,2,3};//类型推断
}
//语法格式四:Lambda 若只需要一个参数时,参数的小括号可以省略
@Test
public void test5(){
Consumer<String> con1 = (s) -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("*******************");
Consumer<String> con2 = s -> {
System.out.println(s);
};
con2.accept("一个是听得人当真了,一个是说的人当真了");
}
//语法格式五:Lambda 需要两个或以上的参数,多条执行语句,并且可以有返回值
@Test
public void test6(){
Comparator<Integer> com1 = new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
}
};
System.out.println(com1.compare(12,21));
System.out.println("*****************************");
Comparator<Integer> com2 = (o1,o2) -> {
System.out.println(o1);
System.out.println(o2);
return o1.compareTo(o2);
};
System.out.println(com2.compare(12,6));
}
//语法格式六:当 Lambda 体只有一条语句时,return 与大括号若有,都可以省略
@Test
public void test7(){
Comparator<Integer> com1 = (o1,o2) -> {
return o1.compareTo(o2);
};
System.out.println(com1.compare(12,6));
System.out.println("*****************************");
Comparator<Integer> com2 = (o1,o2) -> o1.compareTo(o2);
System.out.println(com2.compare(12,21));
}
@Test
public void test8(){
Consumer<String> con1 = s -> {
System.out.println(s);
};
con1.accept("一个是听得人当真了,一个是说的人当真了");
System.out.println("*****************************");
Consumer<String> con2 = s -> System.out.println(s);
con2.accept("一个是听得人当真了,一个是说的人当真了");
}
}
总结:
- -> 左边:lambda形参列表的参数类型可以省略(类型推断);如果lambda形参列表只有一个参数,其一对()也可以省略
- -> 右边:lambda体应该使用一对{}包裹;如果lambda体只有一条执行语句(可能是return语句),省略这一对{}和return关键字
- Lambda表达式的本质:作为函数式接口的实例
- 所以以前用匿名实现类表示的现在都可以用Lambda表达式来写。
函数式接口
如果一个接口中,只声明了一个抽象方法,则此接口就称为函数式接口。我们可以在一个接口上使用 @FunctionalInterface 注解,这样做可以检查它是否是一个函数式接口。同时 javadoc 也会包含一条声明,说明这个接口是一个函数式接口。
在 java.util.function 包下定义 了 Java 8 的丰富的函数式接口。
你可以通过 Lambda 表达式来创建该接口的对象。(若 Lambda 表达式
抛出一个受检异常 (即:非运行时异常),那么该异常需要在目标接口的抽
象方法上进行声明。
作为参数传递 Lambda 表达式:
// 作为参数传递Lambda 表达式:为了将 Lambda 表达式作为参数传递,接收 Lambda表达式的参数类型必须是与该 Lambda 表达式兼容的函数式接口的类型。
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.function.Consumer;
import java.util.function.Predicate;
/**
* java内置的4大核心函数式接口
*
* 消费型接口 Consumer<T> void accept(T t)
* 供给型接口 Supplier<T> T get()
* 函数型接口 Function<T,R> R apply(T t)
* 断定型接口 Predicate<T> boolean test(T t)
*/
public class LambdaTest2 {
@Test
public void test1(){
happyTime(500, new Consumer<Double>() {
@Override
public void accept(Double aDouble) {
System.out.println("学习太累了,去天上人间买了瓶矿泉水,价格为:" + aDouble);
}
});
System.out.println("********************");
happyTime(400,money -> System.out.println("学习太累了,去天上人间喝了口水,价格为:" + money));
}
public void happyTime(double money, Consumer<Double> con){
con.accept(money);
}
@Test
public void test2(){
List<String> list = Arrays.asList("北京","南京","天津","东京","西京","普京");
List<String> filterStrs = filterString(list, new Predicate<String>() {
@Override
public boolean test(String s) {
return s.contains("京");
}
});
System.out.println(filterStrs);
List<String> filterStrs1 = filterString(list,s -> s.contains("京"));
System.out.println(filterStrs1);
}
//根据给定的规则,过滤集合中的字符串。此规则由Predicate的方法决定
public List<String> filterString(List<String> list, Predicate<String> pre){
ArrayList<String> filterList = new ArrayList<>();
for(String s : list){
if(pre.test(s)){
filterList.add(s);
}
}
return filterList;
}
}
方法引用和构造器引用
方法引用
当要传递给 Lambda 体的操作,已经有实现的方法了,可以使用方法引用!
方法引用可以看做是 Lambda 表达式深层次的表达。换句话说,==方法引用就是 Lambda 表达式 ,也就是函数式接口的一个实例==,通过方法的名字来指向一个方法,可以认为是 Lambda 表达式的一个语法糖。
要求:==实现接口的抽象方法 的参数列表和返回值类型,必须与方法引用的方法的参数列表和返回值类型保持一致!==
格式:使用操作符 “::” 将类 (或对象) 与方法名分隔开来:
- 对象::实例方法名
- 类::实例方法名
- 类::静态方法名
import org.junit.Test;
import java.io.PrintStream;
import java.util.Comparator;
import java.util.function.BiPredicate;
import java.util.function.Consumer;
import java.util.function.Function;
import java.util.function.Supplier;
/**
* 方法引用的使用
* 1.使用情境:当要传递给Lambda体的操作,已经有实现的方法了,可以使用方法引用!
* 2.方法引用,本质上就是Lambda表达式,而Lambda表达式作为函数式接口的实例。所以
* 方法引用,也是函数式接口的实例。
* 3. 使用格式: 类(或对象) :: 方法名
* 4. 具体分为如下的三种情况:
* 情况1 对象 :: 非静态方法
* 情况2 类 :: 静态方法
* 情况3 类 :: 非静态方法
* 5. 方法引用使用的要求:要求接口中的抽象方法的形参列表和返回值类型与方法引用的方法的
* 形参列表和返回值类型相同!(针对于情况1和情况2)
*/
public class MethodRefTest {
// 情况一:对象 :: 实例方法
//Consumer中的void accept(T t)
//PrintStream中的void println(T t)
@Test
public void test1() {
Consumer<String> con1 = str -> System.out.println(str);
con1.accept("北京");
System.out.println("*******************");
PrintStream ps = System.out;
Consumer<String> con2 = ps::println;
con2.accept("beijing");
}
//Supplier中的T get()
//Employee中的String getName()
@Test
public void test2() {
Employee emp = new Employee(1001,"Tom",23,5600);
Supplier<String> sup1 = () -> emp.getName();
System.out.println(sup1.get());
System.out.println("*******************");
Supplier<String> sup2 = emp::getName;
System.out.println(sup2.get());
}
// 情况二:类 :: 静态方法
//Comparator中的int compare(T t1,T t2)
//Integer中的int compare(T t1,T t2)
@Test
public void test3() {
Comparator<Integer> com1 = (t1,t2) -> Integer.compare(t1,t2);
System.out.println(com1.compare(12,21));
System.out.println("*******************");
Comparator<Integer> com2 = Integer::compare;
System.out.println(com2.compare(12,3));
}
//Function中的R apply(T t)
//Math中的Long round(Double d)
@Test
public void test4() {
Function<Double,Long> func = new Function<Double, Long>() {
@Override
public Long apply(Double d) {
return Math.round(d);
}
};
System.out.println("*******************");
Function<Double,Long> func1 = d -> Math.round(d);
System.out.println(func1.apply(12.3));
System.out.println("*******************");
Function<Double,Long> func2 = Math::round;
System.out.println(func2.apply(12.6));
}
// 情况三:类 :: 实例方法 (有难度)
// Comparator中的int comapre(T t1,T t2)
// String中的int t1.compareTo(t2)
@Test
public void test5() {
Comparator<String> com1 = (s1,s2) -> s1.compareTo(s2);
System.out.println(com1.compare("abc","abd"));
System.out.println("*******************");
Comparator<String> com2 = String :: compareTo;
System.out.println(com2.compare("abd","abm"));
}
//BiPredicate中的boolean test(T t1, T t2);
//String中的boolean t1.equals(t2)
@Test
public void test6() {
BiPredicate<String,String> pre1 = (s1,s2) -> s1.equals(s2);
System.out.println(pre1.test("abc","abc"));
System.out.println("*******************");
BiPredicate<String,String> pre2 = String :: equals;
System.out.println(pre2.test("abc","abd"));
}
// Function中的R apply(T t)
// Employee中的String getName();
@Test
public void test7() {
Employee employee = new Employee(1001, "Jerry", 23, 6000);
Function<Employee,String> func1 = e -> e.getName();
System.out.println(func1.apply(employee));
System.out.println("*******************");
Function<Employee,String> func2 = Employee::getName;
System.out.println(func2.apply(employee));
}
}
构造器引用&数组引用
构造器引用格式:
ClassName::new
与函数式接口相结合,自动与函数式接口中方法兼容。可以把构造器引用赋值给定义的方法,要求构造器参数列表要与接口中抽象方法的参数列表一致!且方法的返回值即为构造器对应类的对象。
数组引用格式:
type[] :: new
package com.atguigu.java2;
import org.junit.Test;
import java.util.Arrays;
import java.util.function.BiFunction;
import java.util.function.Function;
import java.util.function.Supplier;
/**
* 一、构造器引用
* 和方法引用类似,函数式接口的抽象方法的形参列表和构造器的形参列表一致。
* 抽象方法的返回值类型即为构造器所属的类的类型
*
* 二、数组引用
* 大家可以把数组看做是一个特殊的类,则写法与构造器引用一致。
*/
public class ConstructorRefTest {
//构造器引用
//Supplier中的T get()
//Employee的空参构造器:Employee()
@Test
public void test1(){
Supplier<Employee> sup = new Supplier<Employee>() {
@Override
public Employee get() {
return new Employee();
}
};
System.out.println("*******************");
Supplier<Employee> sup1 = () -> new Employee();
System.out.println(sup1.get());
System.out.println("*******************");
Supplier<Employee> sup2 = Employee :: new;
System.out.println(sup2.get());
}
//Function中的R apply(T t)
@Test
public void test2(){
Function<Integer,Employee> func1 = id -> new Employee(id);
Employee employee = func1.apply(1001);
System.out.println(employee);
System.out.println("*******************");
Function<Integer,Employee> func2 = Employee :: new;
Employee employee1 = func2.apply(1002);
System.out.println(employee1);
}
//BiFunction中的R apply(T t,U u)
@Test
public void test3(){
BiFunction<Integer,String,Employee> func1 = (id,name) -> new Employee(id,name);
System.out.println(func1.apply(1001,"Tom"));
System.out.println("*******************");
BiFunction<Integer,String,Employee> func2 = Employee :: new;
System.out.println(func2.apply(1002,"Tom"));
}
//数组引用
//Function中的R apply(T t)
@Test
public void test4(){
Function<Integer,String[]> func1 = length -> new String[length];
String[] arr1 = func1.apply(5);
System.out.println(Arrays.toString(arr1));
System.out.println("*******************");
Function<Integer,String[]> func2 = String[] :: new;
String[] arr2 = func2.apply(10);
System.out.println(Arrays.toString(arr2));
}
}
Stream API
Stream API ( java.util.stream) 把真正的函数式编程风格引入到 Java 中。这是目前为止对 Java 类库最好的补充,因为 Stream API 可以极大提供 Java 程序员的生产力,让程序员写出高效率、干净、简洁的代码。
Stream 是 Java8 中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。 使用 Stream API 对集合数据进行操作,就类似于使用 SQL 执行的数据库查询。也可以使用 Stream API 来并行执行操作。简言之, Stream API 提供了一种高效且易于使用的处理数据的方式。
实际开发中,项目中多数数据源都来自于 Mysql、Oracle 等。但现在数据源可以更多了,有 MongDB、Radis 等,而这些 NoSQL 的数据就需要
Java 层面去处理 。
Stream 和 Collection 集合的区别: Collection 是一种静态的内存数据结构,而 Stream 是有关计算的。 前者是主要面向内存,存储在内存中;后者主要是面向 CPU ,通过 CPU 实现计算。
Stream到底是什么呢?
是数据渠道,用于操作数据源(集合、数组等)所生成的元素序列。
“集合讲的是数据 Stream 讲的是计算!”注意:① Stream 自己不会存储元素。② Stream 不会改变源对象。相反,他们会返回一个持有结果的新 Stream 。③ Stream 操作是==延迟执行==的。这意味着他们会等到需要结果的时候才执行。
Stream 创建方式
// 方式一:通过集合
default Stream<E> stream(); // 返回一个顺序流
default Stream<E> parallelStream(); // 返回一个并行流
// 方式二:通过数组
static <T> Stream<T> stream(T[] array); // 返回一个流
// 重载形式,能够处理对应基本类型的数组:
public static IntStream stream(int[] array)
public static LongStream stream(long[] array)
public static DoubleStream stream(double[] array)
// 方式三:通过 Stream 的 of()
public static<T> Stream<T> of(T... values); // 返回一个流
// 方式四:创建无限流
// 可以使用静态方法Stream.iterate() 和 Stream.generate(),创建无限流。
// 迭代
public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
// 生成
public static<T> Stream<T> generate(Supplier<T> s)
public class StreamAPITest {
//创建 Stream方式一:通过集合
@Test
public void test1(){
List<Employee> employees = EmployeeData.getEmployees();
// default Stream<E> stream() : 返回一个顺序流
Stream<Employee> stream = employees.stream();
// default Stream<E> parallelStream() : 返回一个并行流
Stream<Employee> parallelStream = employees.parallelStream();
}
//创建 Stream方式二:通过数组
@Test
public void test2(){
int[] arr = new int[]{1,2,3,4,5,6};
//调用Arrays类的static <T> Stream<T> stream(T[] array): 返回一个流
IntStream stream = Arrays.stream(arr);
Employee e1 = new Employee(1001,"Tom");
Employee e2 = new Employee(1002,"Jerry");
Employee[] arr1 = new Employee[]{e1,e2};
Stream<Employee> stream1 = Arrays.stream(arr1);
}
//创建 Stream方式三:通过Stream的of()
@Test
public void test3(){
Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);
}
//创建 Stream方式四:创建无限流
@Test
public void test4(){
// 迭代
// public static<T> Stream<T> iterate(final T seed, final UnaryOperator<T> f)
//遍历前10个偶数
Stream.iterate(0, t -> t + 2).limit(10).forEach(System.out::println);
// 生成
// public static<T> Stream<T> generate(Supplier<T> s)
Stream.generate(Math::random).limit(10).forEach(System.out::println);
}
}
中间操作
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理 !而在终止操作时一次性全部处理,称为“惰性求值” 。
1-筛选与切片
方法 | 描述 |
---|---|
filter(Predicate p) | 接收Lambda,从流中排除某些元素 |
distinct() | 筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素 |
limit(long maxSize) | 截断流,使其元素不超过给定数量 |
skip(long n) | 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补 |
2-映射
方法 | 描述 |
---|---|
map(Function f) | 接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。 |
mapToDouble(ToDoubleFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 DoubleStream 。 |
mapToInt(ToIntFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 IntStream 。 |
mapToLong(ToLongFunction f) | 接收一个函数作为参数,该函数会被应用到每个元素上,产生一个新的 LongStream 。 |
flatMap(Function f) | 接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流 |
3-排序
方法 | 描述 |
---|---|
sorted() | 产生一个新流,其中按自然顺序排序 |
sorted(Comparator com) 产生一个新流,其中按比较器顺序排序 | 产生一个新流,其中按比较器顺序排序 |
import com.atguigu.java2.Employee;
import com.atguigu.java2.EmployeeData;
import org.junit.Test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Stream;
/**
* 测试Stream的中间操作
*/
public class StreamAPITest1 {
//1-筛选与切片
@Test
public void test1(){
List<Employee> list = EmployeeData.getEmployees();
// filter(Predicate p)——接收 Lambda , 从流中排除某些元素。
Stream<Employee> stream = list.stream();
//练习:查询员工表中薪资大于7000的员工信息
stream.filter(e -> e.getSalary() > 7000).forEach(System.out::println);
System.out.println();
// limit(n)——截断流,使其元素不超过给定数量。
list.stream().limit(3).forEach(System.out::println);
System.out.println();
// skip(n) —— 跳过元素,返回一个扔掉了前 n 个元素的流。若流中元素不足 n 个,则返回一个空流。与 limit(n) 互补
list.stream().skip(3).forEach(System.out::println);
System.out.println();
// distinct()——筛选,通过流所生成元素的 hashCode() 和 equals() 去除重复元素
list.add(new Employee(1010,"刘强东",40,8000));
list.add(new Employee(1010,"刘强东",41,8000));
list.add(new Employee(1010,"刘强东",40,8000));
list.add(new Employee(1010,"刘强东",40,8000));
list.add(new Employee(1010,"刘强东",40,8000));
// System.out.println(list);
list.stream().distinct().forEach(System.out::println);
}
//映射
@Test
public void test2(){
// map(Function f)——接收一个函数作为参数,将元素转换成其他形式或提取信息,该函数会被应用到每个元素上,并将其映射成一个新的元素。
List<String> list = Arrays.asList("aa", "bb", "cc", "dd");
list.stream().map(str -> str.toUpperCase()).forEach(System.out::println);
// 练习1:获取员工姓名长度大于3的员工的姓名。
List<Employee> employees = EmployeeData.getEmployees();
Stream<String> namesStream = employees.stream().map(Employee::getName);
namesStream.filter(name -> name.length() > 3).forEach(System.out::println);
System.out.println();
//练习2:
Stream<Stream<Character>> streamStream = list.stream().map(StreamAPITest1::fromStringToStream);
streamStream.forEach(s ->{
s.forEach(System.out::println);
});
System.out.println();
// flatMap(Function f)——接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
Stream<Character> characterStream = list.stream().flatMap(StreamAPITest1::fromStringToStream);
characterStream.forEach(System.out::println);
}
//将字符串中的多个字符构成的集合转换为对应的Stream的实例
public static Stream<Character> fromStringToStream(String str){//aa
ArrayList<Character> list = new ArrayList<>();
for(Character c : str.toCharArray()){
list.add(c);
}
return list.stream();
}
//3-排序
@Test
public void test4(){
// sorted()——自然排序
List<Integer> list = Arrays.asList(12, 43, 65, 34, 87, 0, -98, 7);
list.stream().sorted().forEach(System.out::println);
//抛异常,原因:Employee没有实现Comparable接口
// List<Employee> employees = EmployeeData.getEmployees();
// employees.stream().sorted().forEach(System.out::println);
// sorted(Comparator com)——定制排序
List<Employee> employees = EmployeeData.getEmployees();
employees.stream().sorted( (e1,e2) -> {
int ageValue = Integer.compare(e1.getAge(),e2.getAge());
if(ageValue != 0){
return ageValue;
}else{
return -Double.compare(e1.getSalary(),e2.getSalary());
}
}).forEach(System.out::println);
}
}
终止操作
1-匹配与查找
方法 | 描述 |
---|---|
allMatch(Predicate p) | 检查是否匹配所有元素 |
anyMatch(Predicate p) | 检查是否至少匹配一个元素 |
noneMatch(Predicate p) | 检查是否没有匹配的元素 |
findFirst() | 返回第一个元素 |
findAny() | 返回当前流中的任意元素 |
count() | 返回流中元素总数 |
max(Comparator c) | 返回流中最大值 |
min(Comparator c) | 返回流中最小值 |
forEach(Consumer c) | 内部迭代 (使用 Collection 接口需要用户去做迭代,称为外部迭代 。相反, Stream API 使用内部迭代,它帮你把迭代做了) |
2-归约
方法 | 描述 |
---|---|
reduce(T iden, BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 T |
reduce(BinaryOperator b) | 可以将流中元素反复结合起来,得到一个值。返回 Optional |
备注:map 和 reduce 的连接通常称为 map-reduce 模式,因 Google
用它来进行网络搜索而出名。
3-收集
方法 | 描述 |
---|---|
collect(Collector c) | 将流转换为其他形式。接收一个<Collector接口的实现,用于给 Stream 中元素做汇总的方法 |
Collector
接口中方法的实现决定了如何对流执行收集的操作 (如收集到 List 、 Set 、Map) 。另外,
Collectors 实用类提供了很多静态方法,可以方便地创建常见收集器实例,具体方法与实例如下表:
import com.atguigu.java2.Employee;
import com.atguigu.java2.EmployeeData;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
import java.util.Optional;
import java.util.Set;
import java.util.stream.Collectors;
import java.util.stream.Stream;
/**
* 测试Stream的终止操作
*/
public class StreamAPITest2 {
//1-匹配与查找
@Test
public void test1(){
List<Employee> employees = EmployeeData.getEmployees();
// allMatch(Predicate p)——检查是否匹配所有元素。
// 练习:是否所有的员工的年龄都大于18
boolean allMatch = employees.stream().allMatch(e -> e.getAge() > 18);
System.out.println(allMatch);
// anyMatch(Predicate p)——检查是否至少匹配一个元素。
// 练习:是否存在员工的工资大于 10000
boolean anyMatch = employees.stream().anyMatch(e -> e.getSalary() > 10000);
System.out.println(anyMatch);
// noneMatch(Predicate p)——检查是否没有匹配的元素。
// 练习:是否存在员工姓“雷”
boolean noneMatch = employees.stream().noneMatch(e -> e.getName().startsWith("雷"));
System.out.println(noneMatch);
// findFirst——返回第一个元素
Optional<Employee> employee = employees.stream().findFirst();
System.out.println(employee);
// findAny——返回当前流中的任意元素
Optional<Employee> employee1 = employees.parallelStream().findAny();
System.out.println(employee1);
}
@Test
public void test2(){
List<Employee> employees = EmployeeData.getEmployees();
// count——返回流中元素的总个数
long count = employees.stream().filter(e -> e.getSalary() > 5000).count();
System.out.println(count);
// max(Comparator c)——返回流中最大值
// 练习:返回最高的工资:
Stream<Double> salaryStream = employees.stream().map(e -> e.getSalary());
Optional<Double> maxSalary = salaryStream.max(Double::compare);
System.out.println(maxSalary);
// min(Comparator c)——返回流中最小值
// 练习:返回最低工资的员工
Optional<Employee> employee = employees.stream().min((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
System.out.println(employee);
System.out.println();
// forEach(Consumer c)——内部迭代
employees.stream().forEach(System.out::println);
//使用集合的遍历操作
employees.forEach(System.out::println);
}
//2-归约
@Test
public void test3(){
// reduce(T identity, BinaryOperator)——可以将流中元素反复结合起来,得到一个值。返回 T
// 练习1:计算1-10的自然数的和
List<Integer> list = Arrays.asList(1,2,3,4,5,6,7,8,9,10);
Integer sum = list.stream().reduce(0, Integer::sum);
System.out.println(sum);
// reduce(BinaryOperator) ——可以将流中元素反复结合起来,得到一个值。返回 Optional<T>
// 练习2:计算公司所有员工工资的总和
List<Employee> employees = EmployeeData.getEmployees();
Stream<Double> salaryStream = employees.stream().map(Employee::getSalary);
// Optional<Double> sumMoney = salaryStream.reduce(Double::sum);
Optional<Double> sumMoney = salaryStream.reduce((d1,d2) -> d1 + d2);
System.out.println(sumMoney.get());
}
//3-收集
@Test
public void test4(){
// collect(Collector c)——将流转换为其他形式。接收一个 Collector接口的实现,用于给Stream中元素做汇总的方法
// 练习1:查找工资大于6000的员工,结果返回为一个List或Set
List<Employee> employees = EmployeeData.getEmployees();
List<Employee> employeeList = employees.stream().filter(e -> e.getSalary() > 6000).collect(Collectors.toList());
employeeList.forEach(System.out::println);
System.out.println();
Set<Employee> employeeSet = employees.stream().filter(e -> e.getSalary() > 6000).collect(Collectors.toSet());
employeeSet.forEach(System.out::println);
}
}
Optional类
Optional
// 创建 Optional 类对象的方法:
Optional.of(T t); // 创建一个 Optional 实例, t 必须非空
Optional.empty(); // 创建一个空的 Optional 实例
Optional.ofNullable(T t); // t 可以为 null
// 判断 Optional 容器中是否包含对象:
boolean isPresent(); // 判断是否包含对象
void ifPresent(Consumer<? super T> consumer); // 如果有值,就执行 Consumer接口的实现代码,并且该值会作为参数传给它。
// 获取 Optional 容器的对象:
T get(); // 如果调用对象包含值,返回该值,否则抛异常
T orElse(T other); // 如果有值则将其返回,否则返回指定的 other 对象。
T orElseGet(Supplier<? extends T> other); // 如果有值则将其返回,否则返回由Supplier 接口实现提供的对象。
T orElseThrow(Supplier<? extends X> exceptionSupplier); // 如果有值则将其返回,否则抛出由 Supplier 接口实现提供的异常 。