数据结构24-Trie树

NiuMT 2021-01-02 20:58:12
数据结构

[toc]

Trie 树

Trie 树,也叫“字典树”。顾名思义,它是一个树形结构。它是一种专门处理字符串匹配的数据结构,用来解决在一组字符串集合中快速查找某个字符串的问题。

这样一个问题可以有多种解决方法,比如散列表、红黑树,或者前面几节的一些字符串匹配算法,但是,Trie 树在这个问题的解决上,有它特有的优点。不仅如此,Trie 树能解决的问题也不限于此。

有 6 个字符串,它们分别是:how,hi,her,hello,so,see。我们希望在里面多次查找某个字符串是否存在。如果每次查找,都是拿要查找的字符串跟这 6 个字符串依次进行字符串匹配,那效率就比较低,有没有更高效的方法呢?

可以先对这 6 个字符串做一下预处理,组织成 Trie 树的结构,之后每次查找,都是在 Trie 树中进行匹配查找。Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起

image-20210308163639637

其中,根节点不包含任何信息。每个节点表示一个字符串中的字符,从根节点到红色节点的一条路径表示一个字符串(注意:红色节点并不都是叶子节点)。

public class Trie {
  private TrieNode root = new TrieNode('/'); // 存储无意义字符

  // 往 Trie 树中插入一个字符串
  public void insert(char[] text) {
    TrieNode p = root;
    for (int i = 0; i < text.length; ++i) {
      int index = text[i] - 'a';
      if (p.children[index] == null) {
        TrieNode newNode = new TrieNode(text[i]);
        p.children[index] = newNode;
      }
      p = p.children[index];
    }
    p.isEndingChar = true;
  }

  // 在 Trie 树中查找一个字符串
  public boolean find(char[] pattern) {
    TrieNode p = root;
    for (int i = 0; i < pattern.length; ++i) {
      int index = pattern[i] - 'a';
      if (p.children[index] == null) {
        return false; // 不存在 pattern
      }
      p = p.children[index];
    }
    if (p.isEndingChar == false) return false; // 不能完全匹配,只是前缀
    else return true; // 找到 pattern
  }

  public class TrieNode {
    public char data;
    public TrieNode[] children = new TrieNode[26];
    public boolean isEndingChar = false;
    public TrieNode(char data) {
      this.data = data;
    }
  }
}

如果要在一组字符串中,频繁地查询某些字符串,用 Trie 树会非常高效。构建 Trie 树的过程,需要扫描所有的字符串,时间复杂度是 O(n)(n 表示所有字符串的长度和)。但是一旦构建成功之后,后续的查询操作会非常高效。

每次查询时,如果要查询的字符串长度是 k,那我们只需要比对大约 k 个节点,就能完成查询操作。跟原本那组字符串的长度和个数没有任何关系。所以说,构建好 Trie 树后,在其中查找字符串的时间复杂度是 O(k),k 表示要查找的字符串的长度。

Trie 树是非常耗内存的,用的是一种空间换时间的思路

Trie 树的实现的时候,讲到用数组来存储一个节点的子节点的指针。如果字符串中包含从 a 到 z 这 26 个字符,那每个节点都要存储一个长度为 26 的数组,并且每个数组存储一个 8 字节指针(或者是 4 字节,这个大小跟 CPU、操作系统、编译器等有关)。而且,即便一个节点只有很少的子节点,远小于 26 个,比如 3、4 个,我们也要维护一个长度为 26 的数组。

Trie 树的本质是避免重复存储一组字符串的相同前缀子串,但是现在每个字符(对应一个节点)的存储远远大于 1 个字节。在重复的前缀并不多的情况下,Trie 树不但不能节省内存,还有可能会浪费更多的内存。

将每个节点中的数组换成其他数据结构,比如有序数组、跳表、散列表、红黑树等。

假设我们用有序数组,数组中的指针按照所指向的子节点中的字符的大小顺序排列。查询的时候,我们可以通过二分查找的方法,快速查找到某个字符应该匹配的子节点的指针。但是,在往 Trie 树中插入一个字符串的时候,我们为了维护数组中数据的有序性,就会稍微慢了点。

实际上,Trie 树的变体有很多,都可以在一定程度上解决内存消耗的问题。比如,缩点优化,就是对只有一个子节点的节点,而且此节点不是一个串的结束节点,可以将此节点与子节点合并。这样可以节省空间,但却增加了编码难度。

image-20210308170427690

Trie 树与散列表、红黑树的比较

实际上,字符串的匹配问题,笼统上讲,其实就是数据的查找问题。对于支持动态数据高效操作的数据结构,比如散列表、红黑树、跳表等等。实际上,这些数据结构也可以实现在一组字符串中查找字符串的功能。

在一组字符串中查找字符串,Trie 树实际上表现并不好。它对要处理的字符串有严苛的要求。

第一,字符串中包含的字符集不能太大。如果字符集太大,那存储空间可能就会浪费很多。即便可以优化,但也要付出牺牲查询、插入效率的代价。

第二,要求字符串的前缀重合比较多,不然空间消耗会变大很多。

第三,如果要用 Trie 树解决问题,那就要自己从零开始实现一个 Trie 树,还要保证没有 bug,这个在工程上是将简单问题复杂化,除非必须,一般不建议这样做。

第四,通过指针串起来的数据块是不连续的,而 Trie 树中用到了指针,所以,对缓存并不友好,性能上会打个折扣。

综合这几点,针对在一组字符串中查找字符串的问题,在工程中,更倾向于用散列表或者红黑树。因为这两种数据结构,都不需要自己去实现,直接利用编程语言中提供的现成类库就行了。

实际上,Trie 树只是不适合精确匹配查找,这种问题更适合用散列表或者红黑树来解决。Trie 树比较适合的是查找前缀匹配的字符串