数据结构23-字符串匹配

NiuMT 2021-01-02 20:58:12
数据结构

[toc]

BF (Brute Force) 算法

BF 算法( Brute Force ),中文叫作暴力匹配算法,也叫朴素匹配算法。

在字符串 A 中查找字符串 B,那字符串 A 就是主串,字符串 B 就是模式串。把主串的长度记作 n,模式串的长度记作 m。因为我们是在主串中查找模式串,所以 n>m

BF 算法的思想可以用一句话来概括,那就是,在主串中,检查起始位置分别是 0、1、2…n-m 且长度为 m 的 n-m+1 个子串,看有没有跟模式串匹配的

image-20210308103349390

从上面的算法思想和例子,可以看出,在极端情况下,比如主串是“aaaaa…aaaaaa”(省略号表示有很多重复的字符 a),模式串是“aaaaab”。我们每次都比对 m 个字符,要比对 n-m+1 次,所以,这种算法的最坏情况时间复杂度是 O(n*m)。

尽管理论上,BF 算法的时间复杂度很高,是 O(n*m),但在实际的开发中,它却是一个比较常用的字符串匹配算法。为什么这么说呢?原因有两点。

第一,实际的软件开发中,大部分情况下,模式串和主串的长度都不会太长。而且每次模式串与主串中的子串匹配的时候,当中途遇到不能匹配的字符的时候,就可以就停止了,不需要把 m 个字符都比对一下。所以,尽管理论上的最坏情况时间复杂度是 O(n*m),但是,统计意义上,大部分情况下,算法执行效率要比这个高很多。

第二,朴素字符串匹配算法思想简单,代码实现也非常简单。简单意味着不容易出错,如果有 bug 也容易暴露和修复。在工程中,在满足性能要求的前提下,简单是首选。这也是我们常说的KISS(Keep it Simple and Stupid)设计原则

所以,在实际的软件开发中,绝大部分情况下,朴素的字符串匹配算法就够用了。

RK (Rabin-Karp) 算法

RK 算法的全称叫 Rabin-Karp 算法,是由它的两位发明者 Rabin 和 Karp 的名字来命名的。

RK 算法的思路是这样的:通过哈希算法对主串中的 n-m+1 个子串分别求哈希值,然后逐个与模式串的哈希值比较大小。如果某个子串的哈希值与模式串相等,那就说明对应的子串和模式串匹配了(这里先不考虑哈希冲突的问题,后面会讲到)。因为哈希值是一个数字,数字之间比较是否相等是非常快速的,所以模式串和子串比较的效率就提高了。

image-20210308104910573

不过,通过哈希算法计算子串的哈希值的时候,需要遍历子串中的每个字符。尽管模式串与子串比较的效率提高了,但是,算法整体的效率并没有提高。有没有方法可以提高哈希算法计算子串哈希值的效率呢?

假设要匹配的字符串的字符集中只包含 K 个字符,我们可以用一个 K 进制数来表示一个子串,这个 K 进制数转化成十进制数,作为子串的哈希值。比如要处理的字符串只包含 a~z 这 26 个小写字母,那我们就用二十六进制来表示一个字符串。我们把 a~z 这 26 个字符映射到 0~25 这 26 个数字,a 就表示 0,b 就表示 1,以此类推,z 表示 25。在十进制的表示法中,一个数字的值是通过下面的方式计算出来的。对应到二十六进制,一个包含 a 到 z 这 26 个字符的字符串,计算哈希的时候,我们只需要把进位从 10 改成 26 就可以。

image-20210308105016439

这种哈希算法有一个特点,在主串中,相邻两个子串的哈希值的计算公式有一定关系:相邻两个子串 s[i-1] 和 s[i](i 表示子串在主串中的起始位置,子串的长度都为 m),对应的哈希值计算公式有交集,也就是说,我们可以使用 s[i-1] 的哈希值很快的计算出 s[i] 的哈希值。

image-20210308105103181

不过,这里有一个小细节需要注意,那就是 26^(m-1) 这部分的计算,我们可以通过查表的方法来提高效率。我们事先计算好 26^0^、26^1^、26^2^……26^(m-1),并且存储在一个长度为 m 的数组中,公式中的“次方”就对应数组的下标。当我们需要计算 26 的 x 次方的时候,就可以从数组的下标为 x 的位置取值,直接使用,省去了计算的时间。

整个 RK 算法包含两部分,计算子串哈希值和模式串哈希值与子串哈希值之间的比较。第一部分,我们前面也分析了,可以通过设计特殊的哈希算法,只需要扫描一遍主串就能计算出所有子串的哈希值了,所以这部分的时间复杂度是 O(n)

模式串哈希值与每个子串哈希值之间的比较的时间复杂度是 O(1),总共需要比较 n-m+1 个子串的哈希值,所以,这部分的时间复杂度也是 O(n)。所以,RK 算法整体的时间复杂度就是 O(n)。

这里还有一个问题就是,模式串很长,相应的主串中的子串也会很长,通过上面的哈希算法计算得到的哈希值就可能很大,如果超过了计算机中整型数据可以表示的范围,那该如何解决呢?比如将每一个字母从小到大对应一个素数,而不是 1,2,3……这样的自然数,这样冲突的概率就会降低一些。

RK 算法的时间复杂度是 O(n),跟 BF 算法相比,效率提高了很多。不过这样的效率取决于哈希算法的设计方法,如果存在冲突的情况下,时间复杂度可能会退化。极端情况下,哈希算法大量冲突,时间复杂度就退化为 O(n*m)。

BM (Boyer-Moore)算法

核心思想

模式串和主串的匹配过程,看作模式串在主串中不停地往后滑动。当遇到不匹配的字符时,BF 算法和 RK 算法的做法是,模式串往后滑动一位,然后从模式串的第一个字符开始重新匹配。

image-20210308110240768

在这个例子里,主串中的 c,在模式串中是不存在的,所以,模式串向后滑动的时候,只要 c 与模式串有重合,肯定无法匹配。所以,我们可以一次性把模式串往后多滑动几位,把模式串移动到 c 的后面。

image-20210308110258291

BM 算法本质上其实就是在寻找这种规律。借助这种规律,在模式串与主串匹配的过程中,当模式串和主串某个字符不匹配的时候,能够跳过一些肯定不会匹配的情况,将模式串往后多滑动几位。

原理分析

BM 算法包含两部分,分别是坏字符规则(bad character rule)和好后缀规则(good suffix shift)。

坏字符规则

BM 算法的匹配顺序是按照模式串下标从大到小的顺序,倒着匹配的。

image-20210308110514096

当发生不匹配的时候,把坏字符对应的模式串中的字符下标记作 si。如果坏字符在模式串中存在,把这个坏字符在模式串中的下标记作 xi。如果不存在,我们把 xi 记作 -1。那模式串往后移动的位数就等于 si-xi。(注意,我这里说的下标,都是字符在模式串的下标)。如果坏字符在模式串里多处出现,那我们在计算 xi 的时候,选择最靠后的那个,因为这样不会让模式串滑动过多,导致本来可能匹配的情况被滑动略过。

新建位图图像

利用坏字符规则,BM 算法在最好情况下的时间复杂度非常低,是 O(n/m)。比如,主串是 aaabaaabaaabaaab,模式串是 aaaa。每次比对,模式串都可以直接后移四位,所以,匹配具有类似特点的模式串和主串的时候,BM 算法非常高效。

不过,单纯使用坏字符规则还是不够的。因为根据 si-xi 计算出来的移动位数,有可能是负数,比如主串是 aaaaaaaaaaaaaaaa,模式串是 baaa。不但不会向后滑动模式串,还有可能倒退。所以,BM 算法还需要用到“好后缀规则”。

好后缀规则

依然是倒序匹配,我们把已经匹配的 bc 叫作好后缀,记作{u}。我们拿它在模式串中查找,如果找到了另一个跟{u}相匹配的子串{u*},那我们就将模式串滑动到子串{u*}与主串中{u}对齐的位置。

image-20210308112910828

如果在模式串中找不到另一个等于{u}的子串,我们不仅要看好后缀模式串中,是否有另一个匹配的子串,我们还要考察好后缀的后缀子串,是否存在跟模式串的前缀子串匹配的。

image-20210308113025253

我们从好后缀的后缀子串中,找一个最长的并且能跟模式串的前缀子串匹配的,假设是{v},然后将模式串滑动到如图所示的位置。

image-20210308113221169

当模式串和主串中的某个字符不匹配的时候,如何选择用好后缀规则还是坏字符规则,来计算模式串往后滑动的位数?

我们可以分别计算好后缀和坏字符往后滑动的位数,然后取两个数中最大的,作为模式串往后滑动的位数。这种处理方法还可以避免我们前面提到的,根据坏字符规则,计算得到的往后滑动的位数,有可能是负数的情况。

代码实现

假设字符串的字符集不是很大,每个字符长度是 1 字节,我们用大小为 256 的数组,来记录每个字符在模式串中最后出现的位置。数组的下标对应字符的 ASCII 码值,数组中存储这个字符在模式串中出现的位置。

image-20210308142155943

掌握了坏字符规则之后,先把 BM 算法代码的大框架写好,先不考虑好后缀规则,仅用坏字符规则,并且不考虑 si-xi 计算得到的移动位数可能会出现负数的情况。

public int bm(char[] a, int n, char[] b, int m) {
  int[] bc = new int[SIZE]; // 记录模式串中每个字符最后出现的位置
  generateBC(b, m, bc); // 构建坏字符哈希表
  int i = 0; // i 表示主串与模式串对齐的第一个字符
  while (i <= n - m) {
    int j;
    for (j = m - 1; j >= 0; --j) { // 模式串从后往前匹配
      if (a[i+j] != b[j]) break; // 坏字符对应模式串中的下标是 j
    }
    if (j < 0) {
      return i; // 匹配成功,返回主串与模式串第一个匹配的字符的位置
    }
    // 这里等同于将模式串往后滑动 j-bc[(int)a[i+j]] 位
    i = i + (j - bc[(int)a[i+j]]); 
  }
  return -1;
}

因为好后缀也是模式串本身的后缀子串,所以,我们可以在模式串和主串正式匹配之前,通过预处理模式串,预先计算好模式串的每个后缀子串,对应的另一个可匹配子串的位置。

因为后缀子串的最后一个字符的位置是固定的,下标为 m-1,只需要记录长度就可以了。通过长度,可以确定一个唯一的后缀子串。

现在,要引入最关键的变量 suffix 数组。suffix 数组的下标 k,表示后缀子串的长度,下标对应的数组值存储的是,在模式串中跟好后缀{u}相匹配的子串{u*}的起始下标值。如,在模式串中和后一个b匹配的下标是2。如果模式串中有多个(大于 1 个)子串跟后缀子串{u}匹配,存储模式串中最靠后的那个子串的起始位置,也就是下标最大的那个子串的起始位置,避免模式串往后滑动得过头了。

image-20210308144856447

// b 表示模式串,m 表示长度,suffix,prefix 数组事先申请好了
private void generateGS(char[] b, int m, int[] suffix, boolean[] prefix) {
  for (int i = 0; i < m; ++i) { // 初始化
    suffix[i] = -1;
    prefix[i] = false;
  }
  for (int i = 0; i < m - 1; ++i) { // b[0, i]
    int j = i;
    int k = 0; // 公共后缀子串长度
    while (j >= 0 && b[j] == b[m-1-k]) { // 与 b[0, m-1] 求公共后缀子串
      --j;
      ++k;
      suffix[k] = j+1; //j+1 表示公共后缀子串在 b[0, i] 中的起始下标
    }
    i
    if (j == -1) prefix[k] = true; // 如果公共后缀子串也是模式串的前缀子串
  }
}
// a,b 表示主串和模式串;n,m 表示主串和模式串的长度。
public int bm(char[] a, int n, char[] b, int m) {
  int[] bc = new int[SIZE]; // 记录模式串中每个字符最后出现的位置
  generateBC(b, m, bc); // 构建坏字符哈希表
  int[] suffix = new int[m];
  boolean[] prefix = new boolean[m];
  generateGS(b, m, suffix, prefix);
  int i = 0; // j 表示主串与模式串匹配的第一个字符
  while (i <= n - m) {
    int j;
    for (j = m - 1; j >= 0; --j) { // 模式串从后往前匹配
      if (a[i+j] != b[j]) break; // 坏字符对应模式串中的下标是 j
    }
    if (j < 0) {
      return i; // 匹配成功,返回主串与模式串第一个匹配的字符的位置
    }
    int x = j - bc[(int)a[i+j]];
    int y = 0;
    if (j < m-1) { // 如果有好后缀的话
      y = moveByGS(j, m, suffix, prefix);
    }
    i = i + Math.max(x, y);
  }
  return -1;
}

// j 表示坏字符对应的模式串中的字符下标 ; m 表示模式串长度
private int moveByGS(int j, int m, int[] suffix, boolean[] prefix) {
  int k = m - 1 - j; // 好后缀长度
  if (suffix[k] != -1) return j - suffix[k] +1;
  for (int r = j+2; r <= m-1; ++r) {
    if (prefix[m-r] == true) {
      return r;
    }
  }
  return m;
}

性能分析及优化

整个算法用到了额外的 3 个数组,其中 bc 数组的大小跟字符集大小有关,suffix 数组和 prefix 数组的大小跟模式串长度 m 有关。

如果我们处理字符集很大的字符串匹配问题,bc 数组对内存的消耗就会比较多。因为好后缀和坏字符规则是独立的,如果我们运行的环境对内存要求苛刻,可以只使用好后缀规则,不使用坏字符规则,这样就可以避免 bc 数组过多的内存消耗。不过,单纯使用好后缀规则的 BM 算法效率就会下降一些了。

BM 算法的时间复杂度分析起来是非常复杂,这篇论文“A new proof of the linearity of the Boyer-Moore string searching algorithm”证明了在最坏情况下,BM 算法的比较次数上限是 5n。这篇论文“Tight bounds on the complexity of the Boyer-Moore string matching algorithm”证明了在最坏情况下,BM 算法的比较次数上限是 3n。

BM 算法核心思想是,利用模式串本身的特点,在模式串中某个字符与主串不能匹配的时候,将模式串往后多滑动几位,以此来减少不必要的字符比较,提高匹配的效率。BM 算法构建的规则有两类,坏字符规则和好后缀规则。好后缀规则可以独立于坏字符规则使用。因为坏字符规则的实现比较耗内存,为了节省内存,我们可以只用好后缀规则来实现 BM 算法。

KMP 算法基本原理

KMP 算法是根据三位作者(D.E.Knuth,J.H.Morris 和 V.R.Pratt)的名字来命名的,算法的全称是 Knuth Morris Pratt 算法,简称为 KMP 算法。

在模式串和主串匹配的过程中,把不能匹配的那个字符仍然叫作坏字符,把已经匹配的那段字符串叫作好前缀

看不懂!!!